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Abstract
Red meat and processed meat intake is associated with a risk of colorectal cancer, a major cause of

death in affluent countries. Epidemiological and experimental evidence supports the hypothesis that

heme iron present in meat promotes colorectal cancer. This meta-analysis of prospective cohort studies

of colon cancer reporting heme intake included 566,607 individuals and 4,734 cases of colon cancer.

The relative risk of colon cancer was 1.18 (95% CI: 1.06–1.32) for subjects in the highest category of

heme iron intake compared with those in the lowest category. Epidemiological data thus show a

suggestive association between dietary heme and risk of colon cancer. The analysis of experimental

studies in rats with chemically-induced colon cancer showed that dietary hemoglobin and red meat

consistently promote aberrant crypt foci, a putative precancer lesion. The mechanism is not known, but

heme iron has a catalytic effect on (i) the endogenous formation of carcinogenic N-nitroso compounds

and (ii) the formation of cytotoxic and genotoxic aldehydes by lipoperoxidation. A review of

evidence supporting these hypotheses suggests that both pathways are involved in heme iron toxicity.

Cancer Prev Res; 4(2); 177–84. �2011 AACR.

Introduction

Cancer of the colon and rectum, taken together, are the
third most common type of cancer worldwide (1). In most
publications, colon and rectal cancer are studied together
and the term colorectal cancer (CRC) is used, which we also
use here, except when the publications refer specifically to
colon or rectal cancer. CRC is the second most common
cause of cancer death in affluent countries. Dietary mod-
ifications might reduce this cancer burden by up to 70%
(2). Three recent meta-analyses showed that total meat
intake is not related to risk but that intake of red or
processed meat is associated with a modest, but significant
risk of CRC (3–5). Processed meat intake appears to be
more closely linked with the risk of CRC than fresh red
meat intake. In its 2007 report, the World Cancer Research
Fund panel recommended that one should limit intake of
red meat and avoid processed meat (1).
Several mechanisms may explain the relationship

between the risk of CRC and the intake of red or pro-

cessed meat. First, meat cooked at high temperature
contains mutagenic heterocyclic amines. But heterocyclic
amines might not be major players in CRC risk, as: (i)
consumption of chicken is a major contributor to intake
of heterocyclic amines, but is not associated with the risk
(6); and (ii) doses of heterocyclic amines that induce
cancer in animals are 1,000 to 100,000 times higher than
the dose ingested by humans (7). A second hypothesis
suggests that the high saturated fat content of red and
processed meat increases the risk of CRC. But several
studies, including a recent meta-analysis, showed no
effect of saturated fat on colorectal carcinogenesis
(8–11). A third hypothesis concerns the carcinogenic
N-nitroso compounds (NOC), which can be formed in
the gastrointestinal tract by N-nitrosation of peptide
derived amines or amides. The role of NOC in human
cancer is discussed in the following text. Other more
unlikely hypotheses involve the high protein, cholesterol,
and salt content of red or processed meat. For a review of
all these mechanisms, see ref. 12.

Sesink and colleagues suggested that heme iron, in the
form of hemin [chloroprotoporphyrin IX iron(III)] a ferric
form of heme, may explain the link between the risk of
colon cancer and red meat intake, and the lack of a link
with white meat intake (13). Epidemiological and experi-
mental evidence support heme toxicity. Heme consists of
an iron atom present at the center of a large heterocyclic
organic ring called a porphyrin (Fig. 1). Heme is included
in so-called hemoprotein, that is, hemoglobin, myoglobin
(both involved in the oxygen supply), and in cytochromes
(which catalyze electron transfer reactions). Red meat
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(such as beef, veal, lamb, mutton, pork, and offal) owes it
dark red color to the presence of a high concentration of
myoglobin, and the heme content of red meat is 10-fold
higher than that of white meat (such as chicken; ref. 14). In
processed red meat, heme iron is nitrosylated, because
curing salt contains nitrate or nitrite (Fig. 1; ref. 12).

The aims of the present mini-review were: (i) to conduct
a meta-analysis of epidemiological cohort studies on heme
intake and the risk of colon cancer; (ii) to review experi-
mental evidence supporting the aforementioned heme
hypothesis; and (iii) to understand the mechanism of
action of heme in carcinogenesis.

Heme iron intake and risk of colon cancer:
a meta-analysis of prospective cohort studies

The objective of this part of the review was to assess,
through meta-analysis, the magnitude of the relation
between heme iron intake and colon cancer. As most
studies do not report data on rectal cancer, we decided
to limit our analysis to colon cancer. The methodological
procedure is described in the Supplementary Material to
this article.

The characteristics of the 5 prospective cohort studies
included in the meta-analysis are summarized in Supple-
mentary Data (Table S1). This meta-analysis included
data on 566,607 individuals and 4,734 cases of colon
cancer. Although 1 cohort study found no association
between heme and cancer (15), 3 found that a high intake
of heme iron was linked with a higher risk of colon cancer
(16–18), and 1 found a positive, but not significant,
association between heme iron and colon cancer (19;
Fig. 2). In the Lee and colleagues study, the relative risk
(RR) for both proximal and distal colon was 1.53 (95%
CI: 0.99–2.38). In the Balder and colleagues study, the
association was positive in the 2 genders combined (RR ¼
1.35, 95% CI: 1.03–1.77; ref. 17). The summary RR of
colon cancer in all 5 studies was 1.18 (95% CI: 1.06–
1.32) for subjects in the highest category of heme iron
intake compared with those in the lowest category
(Fig. 2). This meta-analysis showed a consistent associa-
tion between high intake of heme iron and increased risk
of colon cancer.

Two studies out of 5 considered calcium in the adjust-
ments for the RR (16–18), and showed the strongest

Figure 1. Structure of molecules cited in the review.
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association between heme iron and colon cancer. This
makes sense, as calcium inhibits heme-induced cytotoxi-
city, colonic epithelial hyperproliferation, and promotion
of chemically induced carcinogenesis in animal models
(20–22).
Two studies we excluded from the meta-analysis found

similar results. An ecological study found a direct correla-
tion between the dietary iron index and colon and rectal
cancer (23). Ferrucci and colleagues observed a positive,
but not significant, association between heme iron in diet
and colorectal adenoma.
The present meta-analysis is the first to examine the

relation between heme iron and colon cancer. But this
study also has its limitations; first it includes only 5
cohort studies, and the way heme intake was measured
differs in each study. Lee and colleagues and Larsson and
colleagues calculated heme iron content in the diet by
applying a factor of 0.4 to the total iron content of all
meat items which essentially is reporting an overall red
meat effect (16, 18). Balder and colleagues multiplied the
heme iron content of each meat item by the mean daily
intake of the relevant food item, estimated from the
Dutch Food Composition Database (17), but the 2 meth-
ods yielded similar results (15). Cross and colleagues
developed a new heme iron database based on measured
values in conjunction with a detailed meat cooking ques-
tionnaire (19).

In conclusion, this meta-analysis showed a significant
and consistent but modest increase in the risk of colon
cancer associated with high heme iron intake. This study
should be pursued by future prospective cohort studies, but
this epidemiological result is in line with experimental
in vivo results detailed in the following text.

Experimental evidence of colorectal cancer promotion
by heme iron

Sawa and colleagues showed that dietary hemoglobin
produces lipid peroxyl radicals and increases the inci-
dence of nitrosomethylurea-induced colon cancer in rats
fed polyunsaturated fat (24). Sesink and colleagues
studied the effect of hemin-supplemented diet in non-
initiated rats. Dietary hemin increases fat peroxidation
and cytotoxic activity of fecal water, and epithelial pro-
liferation by 70% (13). In hemin, the iron atom is
stabilized by a freely exchangeable chloride. Pierre
and colleagues also showed that hemin and hemoglobin
increase the number of azoxymethane-induced aberrant
crypt foci, which are putative preneoplastic lesions, in
the colon of rats (21). In contrast with hemin, dietary
hemoglobin does not increase the cytotoxicity of fecal
water, and it is less potent than hemin in promoting
colon carcinogenesis. Hemoglobin may be a suitable
substitute for myoglobin in nutritional experiments
with animal model, and a model agent for studies on
the cytotoxicity of red meat (21).

Pierre and colleagues also fed 3 types of meat with
different heme content (chicken, beef, and blood sausage)
to rats treated with azoxymethane and fed a low-calcium
diet (25). This study was the first to show that dietary meat
can promote colon carcinogenesis, and that the effect
depends on the heme concentration. The results of this
study of meat contrast with those of several earlier studies,
where red-meat based high-calcium diets failed to promote
colon carcinogenesis, indicating probable protection by
calcium (26). Subsequently, Pierre and colleagues tested
the hypothesis, suggested by epidemiology, that nitrosyl
heme in processed meat was more toxic than native heme
in fresh meat (27). Cured meat can indeed promote colon
carcinogenesis in rats (27). Dietary hemin, but not hemo-
globin, could be used as a model agent to mimic the effects
of processed meat in rats (27). In a recent study, Pierre and
colleagues demonstrated that the nitrosylation of heme
was a key event in the promoting effect of processedmeat in
rats (28).

Analysis of the results of experimental studies of rats with
chemically-induced colon cancer (21, 22, 25, 29), showed
that the global standardized effect size for number of
aberrant crypt foci per colon was 1.73 (95% CI: 1.33–
2.14) in rats given dietary heme iron in hemoglobin or beef
meat, compared with control rats. The logistic regression
approach showed a significant correlation between the
number of aberrant crypts per colon and the concentration
of heme in the diet (P ¼ 0.02; see Methods and Figure in
Supplementary Data). This experimental evidence that
heme iron promotes carcinogenesis in rats is consistent

Figure 2. Relative risks of colon cancer in prospective cohort studies,
comparing the highest with the lowest category of heme iron
consumption. Studies are ordered by year of publication. Squares
represent study-specific RR and the size of squares is proportional to the
statistical weight that each contributed to the summary estimate of relative
risk (percentage weight of each study: Lee et al., 2004, proximal: 6.6%;
Lee et al., 2004, distal: 4.6%; Larsson et al., 2005: 18%; Balder et al., 2006,
women: 11.7%; Balder et al., 2006, men: 12.86%; Kabat et al., 2007,
14.2%; Cross et al., 2010: 32%). Horizontal lines represent 95% CI. The
diamond represents the summary estimate of the relative risk of all studies
included in the meta-analysis.
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with epidemiological evidence. Heme promotion may
explain why the intake of red and processed meat is
associated with a risk of CRC.

Possible mechanisms of heme toxicity in the
gastrointestinal tract

The mechanisms implicated in the promotion of color-
ectal cancer by heme are poorly understood. The mechan-
istic hypotheses are based on the catalytic effect of heme
iron on (i) the formation of NOC and (ii) the formation of
lipid oxidation endproducts.

Heme iron catalyzes N-nitrosation
NOC are formed by N-nitrosation of amines and

amides, produced primarily by bacterial decarboxylation
of amino acids in the presence of a nitrosating agent
(30). There was no a priori reason to think that nitrosa-
tion would require heme iron. The structure of nitrosa-
mine is shown in Figure 1. NOC can be detected by
thermal energy analysis following the release of nitric
oxide from biological samples. This analytical procedure
comprises nitrosyl iron and S-nitrosothiols in addition to
nitrosamines and nitrosamides, which are collectively
referred to as apparent total N-nitroso compounds
(ATNC; ref. 31).

Animal and human studies. Bacon-fed rats had a fecal
concentration of ATNC 10 to 20 times higher than control
rats (32). In addition, mice fed a diet of hot-dogs (18%),
had 4 to 5 times more ATNC, andmice fed a beef diet had 2
to 3 times more ATNC in their feces than controls fed no
meat (33, 34).

Human volunteers given a high red meat diet excreted
much more ATNC in their stools than controls given no
or little red meat, or only white meat (31, 35, 36). The
fecal concentration of ATNC was 60 times higher in
volunteers given cured red meat than in volunteers
given a vegetarian diet (37). Heme iron, and not inor-
ganic iron or meat proteins, may be responsible for the
nitrosation observed in the gut of volunteers fed red
meat (38).

Nature of ATNC. A red meat diet increased nitrosyl
iron and nitrosothiols in ileal outputs and in stools of
volunteers, compared with a vegetarian diet, suggesting
that these compounds contribute significantly to ATNC
(39, 40). Nitrosothiols are rapidly formed from nitrite
and thiol groups at low pH in the stomach and can be
precursors for the formation of nitrosyl heme and NOC in
the gut (39). The strong correlation between fecal nitrosyl
iron and fecal heme suggests that nitrosyl heme is the
main source of nitrosyl iron (39). Moreover, ATNC
precursors from hot dogs were partially purified and
separated by HPLC (41). One fraction was identified as
1-deoxy-N-1-glucosyl glycine by mass spectrometry, and
the nitrosated fraction was shown to be mutagenic by the
Ames test (41).

Carcinogenicity of nitrosated compounds. The carcino-
genicity of ATNC formed in the gut after eating heme from
red or processed meat is unknown. Parnaud and colleagues

found no initiation or promotion of preneoplastic lesions
by ATNC in the colon of rats fed a bacon-based diet (32).
Kunhle and colleagues speculated that nitrosyl iron com-
pounds and nitrosothiols may contribute to the tumoro-
genic potential of the diet (39). By contrast, in a
commentary on Kunhle’s article, Hogg speculated that
the sequestration of the "nitrosating potential" of the diet
as nitrosothiol or as nitrosyl iron may be a protective
mechanism that would limit the formation of DNA alky-
lating agents (42).

However, several arguments suggest that ATNC may be
important genotoxins. First, most NOC, such as nitrosa-
mines, nitrosamides, and nitrosoguanidines, can yield
alkylating agents during metabolism, and cause DNA
damage. For instance N-methyl-N-nitrosurea intrarectally
perfused induced G ! A transitions in K-ras in 30% of rat
colon carcinoma (43). In addition, nitrosated glycine deri-
vatives reacted with DNA to give rise to promutagenic and
toxic adducts including O6-methylguanine and O6-carbox-
ymethylguanine (44). O6-Carboxymethylguanine adducts
were found in stool exfoliated colonocytes from volunteers
eating red meat, with a correlation between the level of
adducts and of fecal ATNC, suggesting that ATNC are
genotoxic (45). Moreover, potassium diazoacetate, a stable
form of nitrosated glycine, was shown to induce mutations
in the p53 gene in a functional yeast assay (46). The
patterns of mutations were similar to the patterns observed
in human colon tumors. This supports the hypotheses that
nitrosation of compounds related to glycine contributes to
p53mutations in humans, and that O6-carboxymethylgua-
nine adducts in exfoliated colorectal cells are related to
CRC (46).

Heme iron catalyzes the oxidation of polyunsaturated
fats

The polyunsaturated fatty acid residues of phospholi-
pids are extremely sensitive to oxidation. Lipid peroxida-
tion is initiated by free-radical attack of membrane lipids
and is catalyzed by heme with the following reaction:
LOOH (lipid hydroperoxide) þ Fe-ligand (heme) !
LOOFe ligands ! LO� (lipid alkoxy radical) þ �OFe
ligands (heme oxiradical; ref. 47). The initial products
of unsaturated fatty acid oxidation are lipid hydroper-
oxides, but they are relatively short lived. They are either
reduced by glutathione peroxidase to unreactive fatty acid
alcohols or they react with metals to produce a variety of
reactive compounds such as epoxides and aldehydes. The
major aldehyde products of lipid peroxidation are mal-
ondialdehyde (MDA) and 4-hydroxynonenal (4-HNE;
ref. 48). These dietary lipid oxidation end products are
risk factors for several human diseases (for review, see
refs. 49, 50).

Malondialdehyde. MDA is formed by oxidation of poly-
unsaturated fatty acids with 2 or more double bonds.
MDA-induced DNA damage is mutagenic in bacterial,
mammalian, and human cells (51–53). MDA reacts with
DNA to form adducts with deoxyguanosine, deoxyadeno-
sine, and deoxycytidine (for review, see ref. 54). The major
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DNA adduct formed by reaction of MDAwith DNA is 1,N2-
malondialdehyde-deoxyguanosine (M1dG). M1dG was
detected in colorectal biopsies from normal mucosa of
162 participants in the United Kingdom FlexiScope Sig-
moidoscopy Screening Trial and the EPIC study (55). The
level of this adduct was modulated by dietary and lifestyle
habits, and there is to higher M1dG levels in subjects with
adenoma compared with adenoma-free subjects (P <
0.005; ref. 55).
4-Hydroxynonenal. In contrast with MDA, 4-HNE is

weakly mutagenic but appears to be the main toxic
product of lipid peroxidation (Fig. 1). 4-HNE has power-
ful effects on signal transduction pathways and some of
its effects appear to be independent of DNA damage (48).
Indeed, 4-HNE present in fecal water can induce apop-
tosis and necrosis of human colon carcinoma cells
through caspase 3 activation (56). Mutations in the
adenomatous polyposis coli (Apc) gene on the chromosome
5q21 locus are considered to be one of the earliest events
in the initiation of CRC (57). Moreover, Apc mutation
was shown to reduce the level of caspases 3, 7, and 9 in
mouse colonocytes, leading to resistance to apoptosis
(58). An intestinal cell line derived from C57BL/6J mice
(Apcþ/þ) and Min mice (Apc Min/þ) retained the hetero-
zygous Apc genotype and the disordered actin cytoskele-
ton network for the Apc Min/þ cell line (59, 60). By

exposing this cell line to fecal water of heme-fed rats or
to 4-HNE, Pierre and colleagues showed that apoptosis
was suppressed in Apc Min/þ cells (61). The heterozygote
Apc mutation is thus a strong selective advantage for
colonic cells exposed to a lipoperoxidation-related
genotoxic environment such as excess heme iron or 4-
HNE (61).

In summary, heme catalyzes the formation of ATNC and
of lipid oxidation end products, which may explain the
promoting effects of red and processed meat on CRC.
However, the procarcinogenic effect of heme can be inhib-
ited by several molecules. First, calcium salts and chloro-
phyll can precipitate heme molecules and inhibit the
cytotoxic and hyperproliferative effect of heme in the rat
epithelium (17, 20–22, 62, 63). Moreover, the endogenous
formation of ATNC is inhibited by vitamins C and E, and
lipoperoxidation is inhibited by several polyphenols such
as quercetin, a-tocopherol, or red wine polyphenols (64–
68). The catalytic effects of heme and its inhibition are
summarized in Figure 3.

Conclusion

CRC is the leading cause of cancer death among non-
smokers in affluent countries, and its prevention is thus a
major goal for public health. Epidemiological studies

Figure 3.Catalytic effects of heme
on the formation of ATNC and lipid
peroxidation, and their inhibition.
Consequences for the
development of CRC. Heme
catalyzes the formation of ATNC
and lipid peroxidation
endproducts, which partially
explains the promoting effect of
red and processed meat on CRC.
The catalytic effects of heme can
be inhibited by trapping the heme
(calcium, chlorophyll). The
endogenous formation of ATNC is
inhibited by vitamins C and E, and
it appears that polyphenols can
inhibit lipid peroxidation.
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demonstrate a modest but significant and consistent
relation between red meat and processed meat intake
and CRC risk. The dietary recommendations are to reduce
red meat intake and to avoid processed meat intake (1).
However, meat is an important source of proteins, pro-
viding all essential amino acids, and it is an excellent
source of iron and zinc. Iron deficiency is the most
widespread nutritional disorder in the world, especially
among children and premenopausal women, and results
in iron deficiency anemia (1). Knowledge of the mechan-
ism of CRC promotion by meat may allow an alternative
prevention strategy to be developed: inhibiting red and
processed meat toxicity instead of stopping meat intake.
Among the hypotheses explaining the association
between meat intake and the risk of CRC, the effect of
heme iron is supported by both epidemiological (Fig. 2)
and experimental evidence (Supplementary Fig. S1). Sev-
eral mechanisms may explain the effect of heme on CRC,
and the 2 major hypotheses are: (i) heme catalyzes the
endogenous formation of ATNC; and (ii) heme catalyzes
the peroxidation of dietary fats (Fig. 3). Calcium salts,
chlorophyll, vitamin C, and several polyphenols may

reduce these deleterious effects of heme. Specific recom-
mendations might be made, for example, "eat a yogurt
after your steak." Moreover, vitamins or polyphenols
could be added during the curing process. Ascorbic acid
is already added during the processing of processed meats
specifically to inhibit the formation of volatile NOC in
the meat (69). We expect that this will reduce the risk of
CRC without losing the benefit and the pleasure of eating
meat.
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